
KYBER NETWORK PTE. LTD.

Smart Contract & Blockchain

Code Assessment

Katalyst - Network V4

PwC Switzerland
July 7, 2020

Contents
1 Executive Summary 3

2 Assessment Overview 4

3 System Overview 5

4 Limitations and use of report 18

5 Terminology 19

6 Findings 20

7 Resolved Findings 23

8 Notes 35

2
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

KYBER NETWORK PTE. LTD.
8 EU TONG SEN STREET
Singapore 059818

1 Executive Summary
Dear Loi, dear Victor,

First and foremost we would like to thank KYBER NETWORK PTE. LTD. for giving us the
opportunity to assess the current state of their Katalyst - Network V4 system. This document
outlines the findings, limitations, and methodology of our assessment.

The projects comes with an extensive suite of tests covering all intended functionality of the smart
contracts. Nevertheless some issues, for example:

• Trading with reserve not allowed to trade this token or

• Removing reserves and the approval for tokens

have been uncovered during the assessment. All issues are explained in detail in this report.

All discovered issues above with a severity higher than low have been addressed - either through
code corrections or specification changes.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are
highly committed to further support your project.

Yours sincerely,

PricewaterhouseCoopers AG

Andreas Eschbach Hubert Ritzdorf

PricewaterhouseCoopers Ltd, Birchstrasse 160, Postfach, CH-8050 Zürich, Switzerland
Telephone: +41 58 792 44 00, Facsimile: +41 58 792 44 10, www.pwc.ch
PricewaterhouseCoopers Ltd is a member of the global PricewaterhouseCoopers network of firms, each of which is a separate and independent legal entity.

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the
code commit which is referenced throughout this report.

2.1 Scope
The general scope of the assessment is set out in our engagement letter with KYBER NETWORK
PTE. LTD. dated April 20, 2020. The assessment was performed on the source code files inside the
Katalyst - Network V4 repository based on the documentation files. The table below indicates the
code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 20 April 2020 dc67694f2835d33b6a0248fd2ff2b83b236e5a18 Initial Version

2 11 June 2020 f2831571466bbf5ccc43b297e54c48fbe1e08794 After First Report

3 25 June 2020 506e51fbfd4b56d18ca4260fa365502e3834156a After Second Report

4 1 July 2020 d7a026dbcff230ec9676e8f1828762e18f24047b After Third Report

For the solidity smart contracts, the compiler version 0.5.11 was chosen. After the intermediate
report, most of the reviewed contracts were updated to solidity 0.6.6 and moved to a separate
folder named sol6. This version of the code contained a number of changes which did not address
reported findings.

We performed the following advisory services:

• Functional verification of the smart contract

• Security verification of the smart contract

• Trust verification of the smart contract

• Assessment of usage of best practice standards of smart contract designs

2.1.1 Excluded from scope
The contract files in the folders mock, bridges, wrappers, utils/zeppelin, and emergency
are excluded from scope.

4
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined

in the Assessment Overview. At the end of this report section we have added subsections to
describe the changes that were implemented in subsequent versions. Furthermore, in the findings
section we have added a version icon to each of the findings to increase the readability of the
report.

Kyber Network offers token swap services on the Ethereum Blockchain. The new edition is the
fourth iteration and offers new functionality such as staking, a platform fee and a DAO.

The smart contracts can be divided into two parts, the Network and the DAO which we cover in the
next two sections.

3.1 Network
The Network part of the Kyber Network system consists of the following contracts:

• KyberNetworkProxy, the entrypoint for the users to execute trades.

• KybeNetwork, contains main logic.

• KyberStorage, stores data about the available reserves.

• KyberMatchingEngine, selects the reserves to use for the token swaps based on the
provided trade hint parameter.

• KyberHintHandler, contains functions to parse and build the hint parameter.

Some of the above contracts will communicate with other Kyber contracts. Specifically, the
KyberDAO contract in order to retrieve the current network fee, and the KyberFeeHandler
contract to forward trade fees to.

3.1.1 Fees
In this new version of Kyber Network reserves no longer need to pay a network fee, instead the
taker needs to pay it. An optional platform fee to be paid by the taker has been introduced which
allows affiliates to generate revenue when facilitating trades.

3.1.1.1 Network fee
The network fee is paid by the taker and determined by the reserve's type. However, some reserve
types like utility reserves are not required to pay a network fee, Kyber never intends to charge a fee
on such reserves without any capital risk. The network fee of each token swap is transferred to the
KyberFeeHandler contract, which will distribute it three ways. This distribution is according to the
BRR (burn/reward/rebate) variable which is decided upon by DAO stakers.

1) burn

The burn part is accumulated inside the KyberFeeHandler contract. Once per burn block
interval the accumulated burn ether can be (partially) burned by any EOA calling
KyberFeeHandler.burnKnc(). This function will swap ether for KNC and immediately burn
the KNC.
Contracts are not allowed to call KyberFeeHandler.burnKnc() to prevent reserves from
triggering the burning themselves and manipulate the KNC price. To complete this mitigation a
sanity exchange rate check has been added.

5
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

2. reward

The reward part is for stakers that voted in KyberDAO voting campaigns. When staker's
vote on voting campaigns they can earn a percentage of the rewards if their voted for
option is the winner.

3. rebate

The rebate part is for reserves that took part in the trade. Each registered reserve has set a
rebateWallet. Any EOA/contract can at any time call the
KyberFeeHandler.claimReserveRebate function to withdraw the earned rebates for
a specific rebateWallet.

3.1.1.2 Platform fee
The current version introduces a platform fee. This allows platforms like token swap aggregators to
generate revenue. When initiating a trade, these can set the parameters accordingly and collect a
fee up to almost 100% of the trade's value.

It is up to the users themselves to ensure the platform fee is reasonable, as the contracts do not
enforce a limit.

Any EOA or contract can at any time call KyberFeeHandler.claimPlatformFee to make a
platform wallet's acquired fees be transferred to the platformWallet address.

3.1.2 Reserves
Reserves provide liquidity to the network. In the current version, reserves need to be added by
Kyber and be listed for a specific token. There are different types of reserves. Depending on the
type, a network fee might or might not have to be paid during a trade. Utility reserves might have
zero network fee while other types have a network fee.

3.1.2.1 Listing reserves
Anybody can deploy a reserve contract and apply for being listed in the Kyber Network. It is up to
Kyber to approve a reserve and add it to the contract. Kyber will also have to separately enable the
token pairs of the added reserve. The trades of listed reserves will be monitored and manually
inspected (gas cost / revert rate) by Kyber. Based on these results Kyber can at any time delist
reserves.

3.1.2.2 Reserve routing
The trade hint parameter's parsing logic has been changed compared to the previous version.
The hint parameters is now used to indicate one of four reserve routing types to use for the token
swap(s). However, this must be backwards compatible with the old hint parameter in order to
avoid unexpected behaviour when using old hints. The four reserve routing types are:

• Best-of-all: The default if no hint is provided, chooses the one reserve offering the best rate.

• Split: Splits the trade across the provided reserves and the corresponding percentages.

• Mask-in: Best-of-all routing over the list of passed reserves.

• Mask-out: Excludes the passed reserves, performs a best-of-all routing over the remaining
reserves.

6
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

3.1.2.3 Reserve rebates
Besides earnings through the exchange of tokens for ether or ether for tokens, a reserve also earns
rebate for each trade it is part of. For each token swap, a part of the network fee is put aside as
rebate for the reserves that took part in the token swap. This rebate is stored inside the
KyberFeeHandler contract and can at any time, and by any EOA or contract, be transferred to
the reserve's designated rebateWallet.

3.1.3 Token swaps
When doing a token swap in Kyber Network there are always two inner swaps performed. First the
token will be swapped for ether, followed by ether being swapped for the dest token. If the swap is
token to ether or ether to token one of the two inner swaps will be ether to ether.

token to token

In case of token to token the first inner swap will exchange token for ether, which is stored
inside the KyberNetwork contract. The second inner swap will be token to ether, and will end
with transferring the ether from KyberNetwork to the destAddress.

token to ether

In case of token to ether the first inner swap will exchange token for ether, which is stored
inside the KyberNetwork contract. The second inner swap will be ether to ether, and will
transfer the ether from KyberNetwork to the destAddress.

ether to token

In case of ether to token the first inner swap will be ether to ether, which will be a noop as the
ether is already inside KyberNetwork. The second inner swap, ether to token, will transfer the
ether to the reserves and receive back tokens in KyberNetwork. Which will then be forwarded
to the destAddress.

3.1.3.1 Kyber Proxy contract

• trade()

• tradeWithHint()

• tradeWithHintAndFee()

• swapTokenToToken()

• swapEtherToToken()

• swapTokenToEther()

In order for users to execute trades one of the above functions in KyberNetworkProxy needs to
be called. These functions will all end up transferring funds to KyberNetwork, followed by calling
KyberNetwork.tradeWithHintAndFee, and afterwards collecting the destination amount and
transferring it to the destAddress. Furthermore, the Kyber Proxy contract will calculate the
expected trade outcome and enforce some sanity checks on the actual trade outcome, to protect
the user.

In the previous versions another Kyber Proxy contract named KyberProxyV1 was used. The new
KyberNetwork contract was designed in such a way to be backwards compatible with
KyberProxyV1.

At any time there can only be two registered Kyber Proxy contracts in the KyberNetwork contract.

7
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

3.1.3.2 Kyber Network contract
The KyberNetwork.tradeWithHint (backward compatible function for the previous proxy) and
KyberNetwork.tradeWithHintAndFee functions can only be called by a registered Kyber
Proxy. They will both initialize the trade data and call trade() to execute the token swap. A token
swap consists of several parts, in sequence:

1. Reserve matching

The trade function will call calcRatesAndAmounts to prepare both inner token swaps. This
will "match" the reserves and amounts to use for both of the inner token swaps.

The reserves and amounts are retrieved by calling the calcDestQtyAndMatchReserves
function. This will call the KyberMatchingEngine to find the reserves according to the source
amount, source token, dest token, and chosen reserve routing type (from the hint).

2. Fee calculations

The calcRatesAndAmounts function will also calculate the platform and network fees to be
paid, as well as the source to dest token rate. If a token swap is token to token the network fee
will be applied twice, on the token to ether inner swap, as well as the ether to token inner swap.

3. Max dest amount safeguard

After preparing all the token swap data, a check will be performed to make sure the dest
amount does not exceed the maxDestAmount of the swap. If exceeded, the dest amount is
lowered to maxDestAmount and the source amounts are recalculated (=lowered).

4. Inner token swaps

The doReserveTrades function will be called for both inner token swaps. Each will will loop
through the reserves for the inner token swap and execute each reserve trade. The second
inner token swap will end with send the dest ether or token to the destAddress of the trade.

5. Fee transfers

After the inner token swaps have been executed the fees are transferred by handleFees. This
function will forward the network and platform fee to the KyberFeeHandler contract. In here
the network fee will be further distributed between reserves and DAO stakers.

6. GasHelper

Before the trade function completes there is an optional call to the GasHelper contract set
inside KyberNetwork. This will burn gas tokens to lower the gas cost of the token transaction.
For the time being this feature is disabled (contract is not set), but it can be activated in the
future.

3.2 The DAO
The DAO part of the Kyber Network system consists of the following contracts:

1. KyberDAO, allows voting with stake on voting campaigns.

2. KyberStaking, allows adding/removing/delegating stake.

3. KyberFeeHandler, stores fees and handle fee payouts.

8
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

3.2.1 KyberStaking contract
The KyberStaking contract allows any account to become a staker by depositing KNC in the
KyberStaking contract. A staker can at any time withdraw (part of) their stake, or delegate their
entire stake to another account. Both delegating and depositing take effect from the next epoch,
whereas withdrawing is immediate.

3.2.1.1 Delegating stake
Any staker can delegate his entire stake to another account, this excludes any stake delegated to
this staker. An account can be set as the delegate for multiple stakers. If an account has stake
delegated to it, it can place votes on behalf of those staker's stake. The Pool Master is expected to
do this for a commission, and return the rest of the rewards back to the stakers. Stakers delegating
their stake therefore need to claim their reward from their pool master. However, this is not part of
the Kyber Network system.

3.2.1.2 Withdrawing stake
Stake withdrawal is a three step process. First, the KyberStaking.handleWithdrawal function
will try to update the staker's stake and delegated stake accordingly. Second, the
KyberDAO.handleWithdrawal function is called to cancel/withdraw (part of) any placed votes in
still active voting campaigns. Third, the staker's latest data KNC balance is deducted by the
to-be-withdrawn amount and the KNC is transferred back to the staker. If step one or two revert, the
error will be caught and cause a special event to be emitted, but step three will still be executed.
This to ensure a staker can always withdraw their stake, regardless of problems in any of the two
handleWithdrawal calls.

When a stake gets (partially-) withdrawn this reduces the staker's reward of this epoch and a small
portion of this epoch's reward will be divided over the other stakers. The reward is calculated based
on the minimum that this staker had staked over the entire epoch, the voting power however is
based on what he had staked during the duration of the vote only. The difference is the small
portion that gets equally distributed over the other stakers.

3.2.2 KyberDAO contract

3.2.2.1 Voting campaigns
The KyberDAO contract lets stakers vote in voting campaigns. There are three different types of
voting campaign.

1. Network Fee: Vote on new network_fee value. Can only have one Network Fee voting
campaign per epoch.

2. BRR (burn/reward/rebate): Vote on updating distribution of network fee (stored inside
brr_data). Can only have one BRR voting campaign per epoch.

3. General: Vote on anything else.

If the Network Fee or the BRR have not been updated in an epoch, the last values remain.

To start a voting campaign, the campaignCreator needs to call submitNewCampaign providing
the type, options (between 2 and 8 inclusive), begin and end timestamp, the minimum percentage
of KNC that needs to participate in the vote, and the minimum percentage of KNC that the most voted
for vote needs to be considered the winner. There can only be one campaignCreator at any time,
and this will be set to an account controlled by Kyber.

9
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

3.2.2.2 Voting
Any EOA or contract can call vote(). However, vote power depends on the amount of KNC that is
accessible to the voting account. If the voting power is zero, a vote can still be placed. However,
without voting power there will be no rewards for the voter and the vote doesn't influence the vote
outcome.

Stakers can place one vote per voting campaign. Stakers can also update their vote in an active
voting campaign. However, to undo/cancel a placed vote in an active voting campaign a staker
needs to fully withdraw his stake.

For a vote to be eligible, the staker must have staked KNC before the start of the epoch with the
voting campaign, and the stake should remain staked until the end of the current epoch.

Voting power is equal to the amount of staked KNC by a staker (if he did not delegate) including
what others delegated to this staker.

For the stakers, the reward they get is the pro-rata amount of total reward based on their voting
points in this epoch.

(The amount of his staked KNC during the entire epoch * number of campaigns he voted for in this epoch) / totalEpochPoints

3.2.2.3 Epochs
The KyberDAO contract works in epochs. The time an epoch takes can only be set in the
constructor and will initially be set to two weeks. During each epoch a maximum of ten voting
campaigns can be created. Each voting campaign needs to start and end in the same epoch, with a
minimum duration of 2 days. If there are zero voting campaigns in an epoch, there are no rewards
and all received reward fees for this epoch are burnt.

3.2.2.4 Claiming rewards
Rewards can be claimed at any point in the future after the respective epoch ended, i.e. rewards
never expire. Any EOA or contract can at any time call claimReward, providing a staker address
and epoch number, to transfer the epoch reward of that staker to the staker address using a
pull payment pattern. This function will call KyberFeeHandler.claimStakerReward to transfer
the reward to the supplied staker.

3.3 Roles

3.3.1 KyberNetwork
Admin

Can withdraw any ERC20 token or ether from the KyberDao contract. Can add/remove
operators/alerters, and transfer the admin role to another address. Can set the KyberDAO,
KyberFeeHandler, KyberMatchingEngine, and GasHelper contracts. Can set the max
gas price, and negligibleRateDiffBps (stored inside KyberMatchingEngine). Can
enable the KyberNetwork contract. Can add/remove a Kyber Proxy contract.

Operator

Can add/remove a reserve, and list/delist token pairs for added reserves.

Kyber Proxy contract

10
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Can call the trade functions.

Any EOA/contract

Can trigger the fetching of the most current network fee from KyberDAO, which is then
stored/cached inside KyberNetwork. Can call any view/pure function.

3.3.2 KyberNetworkProxy
Admin

Can withdraw any ERC20 token or ether from the KyberDao contract. Can add/remove
operators/alerters, and transfer the admin role to another address. Can set the KyberNetwork
and KyberFeeHandler addresses.

Any EOA/contract

Can call the trade functions. Can call any view/pure function.

3.3.3 KyberMatchingEngine
Admin

Can withdraw any ERC20 token or ether from the KyberDao contract. Can add/remove
operators/alerters, and transfer the admin role to another address. Can set the KyberNetwork
and KyberStorage addresses.

KyberNetwork contract

Can set the negligibleRateDiffBps.

Any EOA/contract

Can call any view/pure function.

3.3.4 KyberHintHandler
Any EOA/contract

Can call any view/pure function.

3.3.5 KyberStorage
Admin

Can add/remove operators/alerters, and transfer the admin role to another address. Can set the
KyberNetwork address. Can set the fee accounted per reserve type.

KyberNetwork contract

Can set the KyberDAO, KyberFeeHandler and KyberMatchingEngine addresses. Can
add/remove a reserve, and list/unlist token pairs for an added reserve. Can add/remove a
Kyber Proxy.

3.3.6 KyberDao
Admin

Can withdraw any ERC20 token or ether from the KyberDao contract. Can add/remove
operators/alerters, and transfer the admin role to another address.

11
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Campaign Creator

Can create a new voting campaign, cancel a not yet started voting campaign, and transfer the
role to another address.

KyberStaking contract

Can call handleWithdrawal to cancel (part of) a staker's votes.

Staker

Can place votes using their own stake.

Delegated Staker

Can place votes using their own stake, and the stake of all staker's that delegated to this
account.

Any EOA/contract

Even though possible, a voter with no stake can still call the vote function but it will not
generate any rewards for the voter.

3.3.7 KyberStaking
DAO contract setter

Can one-time set the KyberDAO contract.

KyberDAO contract

Can call initAndReturnStakerDataForCurrentEpoch to initialize staker data inside
KyberStaking and return it to the calling function.

KyberStaking contract

Can internally call handleWithdrawal to withdraw (part of) a staker's stake.

Any EOA/contract

Can deposit (=stake) KNC, assign a delegate, and withdraw (part of) their staked KNC. Can call
any view/pure function.

3.3.8 KyberFeeHandler
BurnConfig setter

Can update the exchange rate sanity-check contract and amount of wei that can be burned in
each burn interval. Can transfer the role to another address.

DAO contract setter

Can one-time set the KyberDAO contract.

KyberNetwork contract

Can call handleFees to send network/platform fees to the fee handler contract.

KyberDAO contract

Can call claimStakerReward to withdraw a staker's rewards in a certain epoch to the staker.

Any EOA/contract

12
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Can call claimReserveRebat to transfer the rebate of a specific reserve to its rebate wallet.
Can call claimPlatformFee to transfer the platform fee of a specific platform wallet to the
platform wallet. Can call shouldBurnEpochReward to check if there should be no reward
payout for a certain epoch and if so mark those rewards as burnable. Can call any view/pure
function.

Any EOA

Can once per burn interval burn KNC which is not reserved for payout.

3.4 Trust Model

↓ Trusts → Kyber Reserves Token User Platform
Kyber partially yes no no

Reserves yes yes no no

Token no no no no

User no no yes yes

Platform no no no no

3.4.1 Kyber
Is fully trusted to:

• Add/remove reserves.

• List/unlist token pairs of reserves.

• Assign/remove the admins/operators.

• Set the references of interacting contracts.

• Not without notice replace the KyberMatchingEngine contract, Which could affect hint
decoding/encoding and thereby a trade's matched reserves.

Needs to trust:

• The supported token contracts.

• the reserves, partially. They could inhibit trades by pulling more tokens than allowed (The trade
will revert but this is a DoS attack)

3.4.2 Reserves
Need to trust:

• Token contracts to not unexpectedly revert on valid transfers.

• Kyber to not stop them without reason or deploy a new matching engine to their disadvantage.

3.4.3 Token contracts
Are fully trusted to:

• Not unexpectedly be updated such that valid transfers cause a revert.

13
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Need to trust:

Depends on the ERC20 token contract implementation.

3.4.4 Users
Are untrusted.

Need to trust:

• Platforms, as the Kyber contracts allow a trade to have a platform fee of up to almost 100%.

3.4.5 Platforms
Are untrusted.

Need to trust:

• Kyber, must trust Kyber to correctly forward the platform fee to the KyberFeeHandler
contract.

↓ Trusts → Kyber Staker Poolmaster
Kyber no no

Staker yes yes

Poolmaster yes no

3.4.6 Stakers
Are untrusted.

Need to trust:

• Their Poolmaster in case they chose to delegate.

• Kyber, to not update KyberNetwork to a contract not forwarding their fees.

3.4.7 Poolmaster
Are trusted by:

• Stakers having delegated to them

Need to trust:

• Kyber to not update KyberNetwork to a contract not forwarding their fees.

3.5 Updates in Version 2
Version 2 of the Kyber Network project introduces the following changes:

• A KyberStorage admin can now enable/disable rebate entitlement per reserve type.

• Several contract specific roles have been consolidated into a new DaoOperator role.

• KyberFeeHandler can accept fees in tokens instead of ether. However, this is currently not
enabled and therefore fee needs to be paid in ether.

14
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

• Several sections of logic have been moved/updated.

• Several contract storage variables have moved to different contract.

• Formal trust assumptions definition was added.

3.6 Updates in Version 4
Version 4 of the Kyber Network project changes the distribution of the rebate part of the fee in case
not all involved reserves are eligible for rebate:

1. Any leftover rebate is now added to the rewards instead of being available for burning.

2. If there are multiple reserves involved but only some are entitled for a rebate, rebate is only
given to the entitled reserves according to splitBps of the trade instead of distributing the
total rebate amongst the eligible reserves.

3.7 Formal trust assumptions
Directly provided by Kyber:

Network admin

• The network admin is assumed to operate the network properly and act upon the interest
of KNC holders.

DAO Operator

• The DaoOperator is assumed to operate the DAO (FeeHandler, the Staking, and the DAO
contract) for the best interest of the DAO which is to increase the performance of the whole
Kyber Network to collect more fees.

• The DaoOperator will not change anything without a clear communication to the DAO
members (aka. Staked KNC holders) and a recorded consensus between the DAO
members via a general campaign

• The DaoOperator ONLY violates the second assumption IF and ONLY IF the situation
requires a very fast reaction of the DaoOperator, otherwise, the whole DAO or
KyberNetwork will take big damage. After such incidents, there must be clear
communication to the DAO members in order to explain, discuss and implement fixes to
ensure the same situation will not happen again

Takers (end users)

15
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

• A user is assumed to give enough allowance of the trading tokens to Kyber proxy contracts
before the trade

• A user is assumed to be aware of the parameters, especially the platform fee which
technically can be very high if they rely on malicious UI providers

• A user is assumed to set reasonable min expected rate parameter in order to protect
himself from front running and market volatility

• A user should be aware that for token to Eth trades. KyberNetworkProxy expects the
destination amount to be in the destination address after KyberNetwork finished
processing the trade. If this amount is forwarded as part of the trade transaction the trade
will revert.

Reserves

• A reserve is assumed to be aware of the fact that during a trade process, it is possible for
other reserves to execute any kinds of on-chain operations in between its price lookup and
actual settlement transaction.

• A reserve must be sure of the settlement price, the settlement price must be better (better
for the reserves, worse for the takers) or equal to the look up price. Double checking of the
settlement price is recommended and if the situation changed in a worse way for the
reserves (e.g. if the reserve inventory changed in between the price lookup and settlement
process), reverting the transaction is recommended.

• In case the trade’s maxDestAmount is set, there is a chance the network will settle a trade
with a better price (better for the reserves, worse for the takers), the reserves are
REQUIRED to continue the settlement instead of reverting the transaction.

• A reserve is assumed to take the following information around the rebate into
account:

• If the reserve registered their inventory wallet to be rebate wallet, the rebate can
be sent directly to the reserve’s inventory at any time if any account claims the
rebate for the reserve intentionally.

• Dao Operator can set the rebate of a class of reserves to 0 at any time (hence it is
strongly recommended not to have negative spread)

• Rebate setting (based on the BRR) can be changed by the dao via the DAO’s
voting campaign, the reserves are assumed to be able to adjust their pricing
accordingly

• A reserve must be sure of the settlement price, the settlement price and the price lookup
are required to be consistent. Double-checking of the settlement price is recommended
and if the situation changed (e.g. if the reserve inventory changed in between the price
lookup and settlement process), reverting the transaction is recommended.

• A reserve doesn't front-run a taker transaction in order to make a profit and be exposed to
more risk with other takers’ transactions

Platforms (integrations who use Kyber to perform trades)

• A platform that uses Kyber to trade must understand the platform fee, the fee will affect the
net price of end users, it increases the platform’s income and reduces user experience at
the same time.

16
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

The Dao (FeeHandler, Staking contract, and the DAO contract)

• The FeeHandler is assumed to be 100% online and collect fees without blocking the
trades.

• The FeeHandler is assumed to receive and record platform fee information properly and
enable integrated platforms to claim their platform fee later.

17
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

4 Limitations and use of report
4.1 Inherent limitations
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional
security measures are necessary. In most cases, applications are either fully protected against a
certain type of attack, or they are completely unprotected against it. Some of the issues may affect
the entire application, while some lack protection only in certain areas. This is why we carry out a
source code assessment aimed at determining all locations that need to be fixed. Within the
customer-determined time frame, PwC Switzerland has performed an assessment in order to
discover as many vulnerabilities as possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting
the criteria predefined in the business specification. We draw attention to the fact that due to
inherent limitations in any software development process and software product an inherent risk
exists that even major failures or malfunctions can remain undetected. Further uncertainties exist in
any software product or application used during the development, which itself cannot be free from
any error or failures. These preconditions can have an impact on the system's code and/or
functions and/or operation. We did not assess the underlying third party infrastructure which adds
further inherent risks as we rely on the correct execution of the included third party technology stack
itself. Report readers should also take into account the facts that over the life cycle of any software
product changes to the product itself or to its environment, in which it is operated, can have an
impact leading to operational behaviours other than initially determined in the business
specification.

4.2 Restriction of use and purpose of the report
Our report is prepared solely for KYBER NETWORK PTE. LTD. for use in connection with the
purpose as described in the preceding paragraph. We do not, in giving our opinion, accept or
assume responsibility or liability for any other purpose or to any other parties to whom our report is
shown or into whose hands it may come.

18
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of
our findings, we determine the likelihood and impact (according to the CVSS risk rating
methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These
severities are derived from the likelihood and the impact using the following table, following a
standard risk assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified
as critical. Intuitively, such findings are likely to be triggered and cause significant disruption.
Overall, the severity correlates with the associated risk. However, every finding's risk should always
be closely checked, regardless of severity.

19
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

6 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved
to the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Risk AcceptedIncorrect Amount for Fee Calculation

• Code Partially Corrected

Risk Accepted

Call Any payable Fallback Function / Incorrect Event Possible

• Risk AcceptedOverflows and Underflows During Calculations

6.1 Incorrect Amount for Fee Calculation
Correctness Low Version 2 Risk Accepted

In case of a token-to-token trade, the network fee is computed in two parts: The fee for
token-to-ETH trade and the fee for ETH-to-token trade. At the start of the ETH-to-token trade, the
first fee has already been deducted:

uint256 actualSrcWei = tradeData.tradeWei -
 tradeData.networkFeeWei -
 tradeData.platformFeeWei;

The second part of the trade is computed based on the actualSrcWei. However, the fees of the
second part are computed based on the tradeData.tradeWei. The fee is computed here:

tradeData.networkFeeWei =
 (((tradeData.tradeWei * tradeData.networkFeeBps) / BPS) * tradeData.feeAccountedBps) /
 BPS;

and deducted here:

if (src == ETH_TOKEN_ADDRESS) {
 // @notice srcAmount is after deducting fees from tradeWei
 // @notice using tradeWei to calculate fee so eth -> token symmetric to token -> eth

20
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

 srcAmountAfterFee = srcAmount -
 (srcAmount * tradeData.networkFeeBps / BPS);

The difference between tradeData.tradeWei and actualSrcWei will be rather small in most
cases. However, we believe that the second fee should be computed based on actualSrcWei.
Otherwise, two separate token-to-ETH and ETH-to-token trades would pay slightly less network
fees (assuming that platform fees are zero) than a joint token-to-token trade. (Two separate trades
would obviously consume significantly more gas. Hence, this is not an attack vector, but rather a
fairness issue.)

Risk accepted:

Kyber explained that the current implementation reflects exactly what was defined in the design
documentation. However, Kyber agrees there is a small difference between the two parts of a trade.
Kyber states: "It is a trade off we decided to make to simplify the fee verification process to protect
taker".

6.2 Call Any payable Fallback Function /
Incorrect Event Possible
Security Low Version 1 Code Partially Corrected Risk Accepted

claimPlatformFee() allows anyone to transfer the fees accumulated to the respective account.
Note that this function features no reentrancy protection.

The transfer of the funds is done using:

(bool success,) = platformWallet.call.value(amount)("");

1. An attacker can call any account with a non-zero ether amount and empty calldata in the
name of the KyberFeeHandler contract. For contracts written in solidity this means any payable
fallback function. All remaining gas will be forwarded. The problem arises as any address can
collect platform fees, these fees are simply awarded to the address stored in the
struct TradeInput of the trade. For this the attacker simply needs to execute a trade and add
some balance to the desired account's earned fee tracker, feePerPlatformWallet[address].

In case the KyberFeeHandler conract has any special permissions in other contracts, this might
be misused.

2. Events could appear to be incorrect in case of reentrancy.

Consider the following example:

The Platform has a fee of 5 wei

1. Call claimPlatformFee() -> receive 4 wei

2. Perform a trade -> Earn some more platform fees

3. PlatformFeePaid emitted.

21
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

We could assume that when PlatformFeePaid is emitted at the end of a transaction, then the
platform fee has been reset to 1, but this is not the case here.

A similar scenario might be possible with rebateWallet and claimReserveRebate().

Code partially corrected and risk accepted:

A reentrancy check was added to claimReserveRebate() and claimPlatformFee(), this
prevents the possibility of incorrect events.

6.3 Overflows and Underflows During
Calculations
Design Low Version 1 Risk Accepted

While SafeMath is used for the relevant calculations in the DAO part, no SafeMath is used in the
Kyber Network part. Without SafeMath, arithmetic operations might over- or underflow. If these
are not detected, this may result in unintended behaviour of the smart contract.

The SafeMath library provides an efficient way to ensure the transaction would revert in case of an
overflow, while only adding a little overhead in gas costs. It's use is considered part of the best
practices for implementing smart contracts.

Using standard arithmetic operations as in the current implementation of the KyberNetwork smart
contracts requires thorough checks on pre and post conditions for all operands. This increases the
complexity and if not done in a structured way and when not documented how it is ensured that
these arithmetic calculations are safe, makes it hard to be audited.

Several, mostly internal, functions in the code suffer from such over-/underflows and rely on the
surrounding code to detect these and revert the transaction. If the code is updated, the usage of
these functions might be different and a check that previously prevented a transaction with an
overflow to successfully complete may not be sufficient anymore.

KyberNetwork.getExpectedRateWithHintAndFee, a function that allows users to query the
expected rate for a trade can be called successfully with parameter platformFeeBps set to a
carefully chosen value so that one or multiple calculations in calcRatesAndAmounts() overflow.
Despite being a view function it should never return a wrong result as otherwise implementors
have to put their own safeguards in place every time they call this function.

Risk accepted:

The mentioned overflow in KyberNetwork.getExpectedRateWithHintAndFee() is now
prevented, a check ensures that platformFeeBps doesn't exceed the value of BPS. An additional
possiblity where an overflow might occur has been mitigated inside
calcSrcAmountsAndGetRates().

Kyber explained that their strategy for detecting overflows and underflows is to review all arithmetic
operations and condition checks and look for possible boundary conditions.

22
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their
categories are explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedTrading With Reserve Not Allowed to Trade This Token

• Specification ChangedtotalEpochPoints Not Matching Specification

Medium -Severity Findings 3

• Specification ChangedAmount for Rate Query Might Be Higher Than Actual Trade Amount

• Code CorrectedRemoving Reserves and the Approval for Tokens

• Specification ChangedThe First Bytes of reserveID Might Not Match reserveType[reserveID]

Low -Severity Findings 15

• Code CorrectedInconsistent bytes32 Comparison

• Code CorrectedSuperfluous setDecimals Call

• Code CorrectedUnnecessary Event Parameter bool add

• Code CorrectedUnused Field rateWithNetworkFee of Struct TradeData

• Code CorrectedUnused Import IKyberFeeHandler.sol in KyberDao.sol

• Code CorrectedDuplicate View Function for negligibleRateDiffBps

• Code CorrectedInconsistent Delegated Event

• Code CorrectedRedundant Array delete

• Code CorrectedRedundant Assertions

• Code CorrectedReward/rebate/BPS Off-By-One

• Code CorrectedUnnecessary Check endTimestamp == 0

• Code CorrectedUse assert for "Should Not Happen"

• Code CorrectedlatestNetworkFeeResult Initial Value Hardcoded but Overwritten in Constructor

• Code Correctedrequire(validateVoteOption) Never Fails

•
Code Corrected

validateCampaignParams of KyberDAO Allows Incompatible startTimestamp and startEpoch

23
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

7.1 Trading With Reserve Not Allowed to Trade
This Token
Design High Version 1 Code Corrected

The KyberNetwork contract implements listPairForReserve(). This function is annotated
with Allow or prevent a specific reserve to trade a pair of tokens and can
only be called by the operator. This pushes or removes the reserve id to/from
reservesPerTokenDest or reservesPerTokenSrc in the KyberStorage contract.

During a trade however these limitations only have an effect for a best-of-all trade if no hint is
provided, or in case the hint is of type Mask-out. Only in these cases the available reserves are
retrieved from the KyberStorage contract.

In case of hints for either Mask-in or Split this limitation is not enforced and if specified and only
if this reserve returns a non-zero rate, the trade continues to execute normally using the reserves
passed in the hint. There are no checks if these reserves are allowed to trade this token pair.

The design of KyberNetwork requires the reserves to pull the tokens using transferFrom()
themselves from KyberNetwork, ether however is transferred automatically with the call.
listPairForReserve approves the reserve address which is required for them to transfer the
tokens successfully. Consequently, for legitimate tokens, the scenario above only works for ether to
token trades.

In case of a malicious reserve, this opens up a new vector of possible attacks. The only protection
against attempting to trade ether for an unsupported token is that the rate of the exchange after
fees must be non-zero. This is checked inside trade() of KyberNetwork. Now a malicious
reserve can return an arbitrary rate for an arbitrary (token-) address circumventing this check. The
malicious token may also simply allow transferFrom() as required for the transfer to work. The
implications of this need to be investigated.

Code corrected:

The reserve IDs are now validated. This is done as follows:
KyberStorage.getReservesData() has been enhanced to check this. It returns an additional
boolean areAllReservesListed which is true only if all involved reserves are listed to trade
this pair. During a trade, KyberNetwork.calcDestQtyAndMatchReserves() retrieves the
data of the involved reserves and will revert if the returned value for areAllReservesListed is
not true.

7.2 totalEpochPoints Not Matching
Specification
Correctness High Version 1 Specification Changed

The specification document states:

totalEpochPoints (uint -> uint): total points for an epoch (total votes f
or all campaigns in that epoch)

24
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

This does not hold in the current implementation, it does not necessarily represent the total votes
for all campaigns in that epoch.

handleWithdrawal() of the KyberDAO contract is responsible for correctly deducting votes in
case of a withdrawal.

If the staker has voted in the current epoch, this is done as follows:

totalEpochPoints[curEpoch] = totalEpochPoints[curEpoch].sub(numVotes.mul(reduceAmount));

// update voted count for each campaign staker has voted
uint256[] memory campaignIDs = epochCampaigns[curEpoch];

for (uint256 i = 0; i < campaignIDs.length; i++) {
 uint256 campaignID = campaignIDs[i];

 uint256 votedOption = stakerVotedOption[staker][campaignID];

 if (votedOption == 0){
 continue;
 } // staker has not voted yet

 Campaign storage campaign = campaignData[campaignID];

 // deduce vote count for current running campaign that this staker has voted
 if (campaign.endTimestamp >= now) {
 // user already voted for this campaign and the campaign is not ended
 campaign.campaignVoteData.totalVotes = campaign.campaignVoteData.totalVotes.sub(reduceAmount);
 campaign.campaignVoteData.votePerOption[votedOption - 1] = campaign
 .campaignVoteData
 .votePerOption[votedOption - 1]
 .sub(reduceAmount);
 }
}

Initially, the value of totalEpochPoints[curEpoch] is reduced by the amount of
numVotes * reduceAmount. The total votes, however, are only deducted if the campaign has
not ended yet if (campaign.endTimestamp >= now).

This finding leads to a discrepancy between totalEpochPoints and its meaning:
total votes for all campaigns in that epoch.

Specification changed:

This variable represents the total amount of eligible votes in an epoch. When a staker withdraws, a
vote will not be affected and remain eligible if the campaing has already ended.

The specification was updated and now states: total points for an epoch which will be used to
determine reward portion(in percentage) for KNC stakers. The total point is deducted when a staker
withdraws his KNC.

7.3 Amount for Rate Query Might Be Higher
Than Actual Trade Amount
Design Medium Version 2 Specification Changed

In case the calculated destination amount of the trade exceeds the maximum destination amount
specified, the required source amount to reach the target amount is recalculated and the change is

25
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

refunded. calcTradeSrcAmountFromDest() is used to recalculate and update the trade data.
This function uses the previously determined reserves and rates.

Hence when the trade is executed the actual reserve trade (or trades in case of trade.split)
may happen using a lower amount then the amount used to query the rate of the reserve.

A reserve might expect the trade to be exactly of the amount previoulsy used to query the rate.
During the initial part of the audit we asked to clarify the assumptions about the reserves, the
updated specification contains the following sentence:

A reserve must be sure of the settlement price, the settlement price and
the price lookup are required to be consistent.

If reserves revert the transaction in this case, all trades where the maxDestAmount has been
exceeded and the source amount had to be recalculated will fail which would break this functionality
entirely.

Querying a rate of a different amount might result in a different rate, better or worse. This can lead
to unexpected behaviour. Reserves have to be very careful when detecting a missmatch between
the amount used for querying the rate and the amount of the actual trade.

Specification changed:

The specification now includes a section on reserve's expected behaviour in case of max dest
amount exceeded. In such cases the reserve should make sure that the new recalculated trade is
"better for the reserve, worse for the taker".

7.4 Removing Reserves and the Approval for
Tokens
Design Medium Version 1 Code Corrected

After a reserve has been added using KyberNetwork.addReserve() it needs to be listed to
trade token pairs. This is done using KyberNetwork.listPairForReserve(). This function
allows a specific reserve to trade a pair of tokens and in case of tokenToEth approves this
reserve to transfer tokens from KyberNetwork. It can also be used to remove the allowance.

A reserve can be removed. To update the reserve address for a reserveID, the reserve needs to
be removed before the new address can be added. Neither the approval for ERC-20 token transfer
is reset nor the entries in the mappings reservesPerTokenSrc or reservesPerTokenDest of
KyberStorages are removed.

Note that this must be done manually using KyberNetwork.listPairForReserve() before the
reserve is removed as afterwards this is not possible anymore.

This has two consequences:

1. If the allowance is not reset and the KyberNetwork contract happens to have a non-zero
balance of these tokens, such a removed reserve could still transfer these tokens.

2. Entries in the mappings reservesPerTokenSrc and reservesPerTokenDest of
KyberStorages would persist. Even without KyberNetwork.listPairForReserve()
being called for the new reserve address, the KyberMatchingEngine would continue to use

26
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

this reserve as possible candidate for such a token swap. If this reserve is selected for a token
to ether trade, this trade would fail as the approval required for transferring the token using
transferFrom() is missing.

Code corrected:

In the updated implementation the functionality to add/remove reserves has been removed from the
KybeNetwork contract and this is now entirely handled inside the KyberStorage contract.
removeReserve() now ensures all tokens have been delisted, which resets the approval to 0,
before removing the reserve. In case a reserve has too many tokens and the removal requires too
much gas, the network has to delist those tokens manually and remove the reserve afterwards.

7.5 The First Bytes of reserveID Might Not
Match reserveType[reserveID]
Correctness Medium Version 1 Specification Changed

The specification document Katalyst - Network V4 changes on page 3 describes the
different type of reserves and their respective reserve ID as follows:

The reserve ID is a 32 bytes where its first byte determines the type of the reserve, the other bytes
will hold a unique name per reserve. The table below lists all of the reserve types and their first byte

This does not hold in the current implementation. The reserve type of a reserve is determined
by the value stored in the mapping reserveType of the KyberStorage contract. To determine
the reserve type, the current code relies on the value stored in this mapping.

A reserve can be added by Kyber using the addReserve function of the KyberNetwork contract.
The reserve id and the reserve type are passed as separate parameters. This calls addReserve()
of the KyberStorage contract and adds the reseve. There is no check if the first byte of the
reserve id matches the reserve type and hence an "invalid" entry might be created.

Specification Changed:

This requirement is outdated and has been removed from the specification.

7.6 Inconsistent bytes32 Comparison
Design Low Version 2 Code Corrected

The KyberStorage.addReserve function contains the following two lines:

require(reserveAddressToId[reserve] == bytes32(0), "reserve has id");
require(reserveId != 0, "reserveId = 0");

27
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

reserveAddressToId[reserve] and reserveId are both of type bytes32. Only in the first
require statment the the zero is explicitly casted to a bytes32. The second check could be
enhanced to be more explict.

Code corrected:

The second check was updated to also cast 0 to bytes32.

7.7 Superfluous setDecimals Call
Design Low Version 2 Code Corrected

The KyberNetwork.listTokenForReserve function calls setDecimals both when adding
and removing a reserve's approval.

if (add) {
 token.safeApprove(reserve, 2**255);
} else {
 token.safeApprove(reserve, 0);
}
setDecimals(token);

If a token is added, decimals is fetched from the token contract and stored inside
KyberNetwork. If a token is removed the decimals do not need to be fetched and stored again.

Code corrected:

The setDecimals call was moved into the first if body, only executing when adding a reserve
token pair listing.

7.8 Unnecessary Event Parameter bool add
Design Low Version 2 Code Corrected

The AddReserveToStorage event inside KyberStorage has a bool add parameter. In the
previous version of the audited code the add parameter was used to indicate adding or removal of a
reserve. In the current version removing a reserve has its own event
RemoveReserveFromStorage. Also, the bool add parameter is always set to true in emitted
AddReserveToStorage events. Therefore, the bool add parameter could be removed, and it
would still be possible to track adding vs removal of reserves.

Code corrected:

The bool add event argument was removed.

28
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

7.9 Unused Field rateWithNetworkFee of
Struct TradeData
Design Low Version 2 Code Corrected

KyberNetwork defines the struct TradeData:

struct TradeData {
 TradeInput input;
 ReservesData tokenToEth;
 ReservesData ethToToken;
 uint256 tradeWei;
 uint256 networkFeeWei;
 uint256 platformFeeWei;
 uint256 networkFeeBps;
 uint256 numEntitledRebateReserves;
 uint256 feeAccountedBps;
 uint256 entitledRebateBps;
 uint256 rateWithNetworkFee;
}

The field rateWithNetworkFee is never set nor read. KyberNetwork.trade() has an internal
variable uint256 rateWithNetworkFee which is used to temporarily store the returned value of
calcRatesAndAmounts.

Code corrected:

The unused field rateWithNetworkFee was removed.

7.10 Unused Import IKyberFeeHandler.sol
in KyberDao.sol
Design Low Version 2 Code Corrected

In previous iterations of the implementation, stakers had to claim their reward in the KyberDao
contract which called the respective function of the KyberFeeHandler contract. This has been
changed and stakers now directly claim their reward from KyberFeeHandler.

The current implementation of KyberDao still imports the IKyberFeeHandler interface which is
no longer used by this contract.

Code corrected:

The unused import was removed.

29
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

7.11 Duplicate View Function for
negligibleRateDiffBps
Design Low Version 1 Code Corrected

The negligibleRateDiffBps variable inside KyberMatchingEngine is declared as public.
Therefore, an automatic getter function called negligibleRateDiffBps is created. However,
there is also a function called getNegligibleRateDiffBps, which simply returns
negligibleRateDiffBps.

Code corrected:

The negligibleRateDiffBps variable is no longer declared as public, thus defaulting to
internal.

7.12 Inconsistent Delegated Event
Design Low Version 1 Code Corrected

The event

event Delegated(
 address indexed staker,
 address indexed delegatedAddress,
 uint256 indexed epoch,
 bool isDelegated
);

is emitted whenever the state of a delegated stake changes. Removing a previously set delegation
is only possible by delegating to oneself which leads to spurious event emissions. The actual
storage changes differ depending on the situation, this inconsistent behaviour may cause confusion
for dApps processing these events.

The delegate function of the KyberStaking contract allows one to delegate ones stake to any
address except to 0x0. Delegating to oneself is equal to undoing a previously set delegation.

In general, if the stake was previously delegated, one Delegated event with the field
isDelegated set to false will be emitted, indicating this delegation is ending. Such an event is
always followed by another Delegated event with the field isDelegated set to true and the
new delegated address. This also holds true for the case when one delegates to one's own
address.

While the delegated address is actually set, the amounts for both delegatedStake entries are not
set in this case as one cannot delegate to oneself - the event should not be emitted as no actual
delegation took place. One event with isDelegated set to false is sufficient to indicate that a
delegation has been withdrawn.

Code corrected:

30
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

The mentioned Delegated event is now only emitted if the new delegate is not the staker.

7.13 Redundant Array delete
Design Low Version 1 Code Corrected

The KyberDAO.cancelCampaign function removes a campagin id from the campaignIDs array
by doing:

delete campaignIDs[campaignIDs.length - 1];
campaignIDs.pop();

The delete is unnecessary as pop will also delete the last element, before decreasing the array
length by 1.

Code corrected:

The delete was removed.

7.14 Redundant Assertions
Design Low Version 1 Code Corrected

The delegate() function of the KyberStaking contract features redundant assertions.

assert(stakerPerEpochData[curEpoch + 1][curDAddr].delegatedStake >= updatedStake);
assert(stakerLatestData[curDAddr].delegatedStake >= updatedStake);

stakerPerEpochData[curEpoch + 1][curDAddr].delegatedStake =
 stakerPerEpochData[curEpoch + 1][curDAddr].delegatedStake.sub(updatedStake);
stakerLatestData[curDAddr].delegatedStake =
 stakerLatestData[curDAddr].delegatedStake.sub(updatedStake);

The SafeMath sub() would revert in case of underflow, making the previous assertions redundant.

Code corrected:

The two assertions have been removed.

7.15 Reward/rebate/BPS Off-By-One
Correctness Low Version 1 Code Corrected

The KyberDao.validateCampaignParams contains the following check:

31
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

require(
 rewardInBps.add(rebateInBps) <= BPS,
 "validateParams: rebate + reward must be smaller then BPS"
);

This will not cause a revert if reward + rebate equals BPS. So either the code or the comment is
incorrect.

Code corrected:

The comment was updated to reflect the code.

7.16 Unnecessary Check endTimestamp == 0
Design Low Version 1 Code Corrected

The KyberDAO.getCampaignWinningOptionAndValue function starts by performing the
following checks:

Campaign storage campaign = campaignData[campaignID];
if (!campaign.campaignExists) {
 return (0, 0);
} // not exist

// not found or not ended yet, return 0 as winning option
if (campaign.endTimestamp == 0 || campaign.endTimestamp > now) {
 return (0, 0);
}

However, the campaign.endTimestamp == 0 check is unnecessary as the
!campaign.campaignExists check will also trigger when endTimestamp == 0.

Code corrected:

The redundant check campaign.endTimestamp == 0 has been removed.

7.17 Use assert for "Should Not Happen"
Design Low Version 1 Code Corrected

The KyberDAO.getStakerRewardPercentageInPrecision function contains the following
code:

// something is wrong here, points should never be greater than total pts
if (points > totalPts) {

32
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

 return 0;
}

If this should not happen, making it an assert might be more suitable.

Code corrected:

The if was replaced with an assert.

7.18 latestNetworkFeeResult Initial Value
Hardcoded but Overwritten in Constructor
Design Low Version 1 Code Corrected

In the KyberDao contract, the variable latestNetworkFeeResult is declared and set to 25.

uint256 internal latestNetworkFeeResult = 25; // 0.25%

Inside the constructor however, this is immediately overwritten using the value passed as argument
_defaultNetworkFeeBps:

latestNetworkFeeResult = _defaultNetworkFeeBps;

The hardcoded value might be misleading for inexperienced readers looking at the smart contract.

Code corrected:

The hardcoded value was removed.

7.19 require(validateVoteOption) Never
Fails
Design Low Version 1 Code Corrected

The KyberDAO.vote function validates the voted for option for the campaign by doing:

require(validateVoteOption(campaignID, option), "vote: invalid campaignID or option");

However, the validateVoteOption itself will either return true or revert. Therefore, the require
around validateVoteOption inside vote() will never fail. Also, returning true from
KyberDAO.validateVoteOption is unnecessary.

This pattern of unnecessarily returning true from a function and consequently wrapping it in a
require is present in multiple places in the smart contracts.

33
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Code corrected:

The validateVoteOption function, as well as several other functions, no longer return true
or are called wrapped in a require.

7.20 validateCampaignParams of KyberDAO
Allows Incompatible startTimestamp and
startEpoch
Correctness Low Version 1 Code Corrected

This function validates parameters for a new campaign and returns true only if the parameters are
valid to start a new campaign. The parameters of this function include startTimestamp and
startEpoch however no check ensures these values are compatible.

A startTimestamp in the current epoch, startEpoch set to current epoch + 1 and an
endTimestamp in current epoch + 1 might result in this function returning true.

Note that the submitNewCampaign function that calls this validateCampaignParams function
is not affected as the passed epoch matches the timestamp.

Code corrected:

The function parameter startEpoch of validateCampaignParams() has been removed and
the epoch is now calculated based on startTimestamp. This resolves the issue described above.

34
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

8 Notes
8.1 Confusing Comment
Note Version 1

The KyberMatchingEngine.doMatch function contains the following code and comment:

// if this reserve pays fee its actual rate is less. so smallestRelevantRate is smaller.
bestReserve.destAmount = (bestReserve.destAmount * BPS) / (BPS + negligibleRateDiffBps);

The code calculats the acceptable destAmount considering the negligibleRateDiffBps. This
is then used to craft a lis of all reserves offering a similar rate within the acceptable negigible
difference. This is irrespective of wether the reserve has to pay a fee or not and is only based on the
resulting destAmount.

While the comment itself is not wrong, it does not describe what happens on the following line and
might be confusing.

8.2 Front-running KNC Burning
Note Version 1

KNC burns occur at predictable times and can be triggered by anyone. As they involve the
purchase of KNC tokens, they can be front-run. However, Kyber has taken a number of meaningful
steps to limit potential benefits of front-running:

• The rate is compared to a secondary source and cannot differ by more than 10%

• At most 2 ETH can be transferred into KNC and burnt

• The burning can only be triggered by an externally owned account

Therefore, under ideal conditions the attacker can gain at most 0.2 ETH. Hence, we perceive this to
be safe unless:

• The secondary source provides incorrect data

• There is a significant price change and the secondary source is not up-to-date

• The value of 0.2 ETH raises immensely

These conditions are out of the control of Kyber. Hence, no change is required from our side. In the
worst case the consequence for Katalyst - Network V4 will be that less KNC are burnt than
expected.

8.3 Imprecise Specification
Note Version 1

We detected some discrepancies between the specifications provided and the actual
implementation. The following findings are nothing major, thus they are summarized in this issue:

35
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

1. For Kyber DAO specifications (iteration 2).pdf

voting power is equal to the eligible stake of the staker at each epoch.

This however is not accurate. A staker can have different voting power for votes in different
campaigns during one epoch. Consider the following scenario:

Initial a staker has 100 KNCs staked, votes for campaign A option 1. After this campaign ended, he
withdraws 50 KNCs and votes for campaign B option 1.

• For campaign A his voting power was 100 KNCs

• For campaign B his voting power was 50 KNCs

The actual voting power is equal to the eligible stake of the staker at the endTimestamp of the
vote.

2. For Kyber Staking specifications.pdf

On page one the phraseology voting power at each epoch is used which is imprecise
(see above).

This document also states address(0) means the staker has not delegated to anyone. This is
incorrect, address(0) is only the case before this stakerPerEpochData mapping entry has
been initialized, afterwards, if undelegated delegatedAddress is equal to the staker.

8.4 Inconsistent Handling to Ensure Non-Zero
Address
Note Version 1

The KyberStorage contract ensures that the passed arguments are non-zero.

require(_feeHandler != IKyberFeeHandler(0), "feeHandler 0");
require(_matchingEngine != address(0), "matchingEngine 0");
IKyberMatchingEngine newMatchingEngine = IKyberMatchingEngine(_matchingEngine);

The handling is inconsistent and differs by contract. For better readability this could be simplified.

8.5 Indexing link of NewCampaignCreated
Note Version 1

KyberDao defines the following event:

event NewCampaignCreated(
 CampaignType campaignType,
 uint256 indexed campaignID,
 uint256 startTimestamp,
 uint256 endTimestamp,
 uint256 minPercentageInPrecision,

36
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

 uint256 cInPrecision,
 uint256 tInPrecision,
 uint256[] options,
 bytes link
);

The parameter bytes link could be indexed. This would allow filtering the events for a given link
and retrieve the according campaign information easily.

8.6 Minimum of One Interaction With
KyberNetwork in Every Epoch
Note Version 1

For the purpose of this code review we assume that at least one trade or query for an exchange
rate happens during each epoch. The duration of an epoch will be set to 2 weeks. This is important
to ensure the network fee values are properly updated using getAndUpdateNetworkFee().

Otherwise following scenario is possible:

• A successful voting campaign on new parameters for the network fee takes place in
epoch x

• There is no interaction with KyberNetwork in epoch x+1, consequently the network fee
values are not updated

• No voting campaign on the network fee takes place in epoch x+1 as this fee has just
recently been updated

• Trades in epoch x+2 will reuse the old outdated network fee from before as the update from
the voting campaign in epoch x has been missed by KyberNetwork in epoch x+1

8.7 Outdated Comments About First Byte of the
Reserve ID
Note Version 2

Previsouly the first byte of the reserve ID designated the reserve's type. While this requirement has
been removed from the specification document, this can still be found as comment throughout the
codebase:

KyberStorage.addReserve() on line 129: /// @param reserveId The reserve ID in 32 bytes. 1st
byte is reserve type

KyberStorage.getReserveDetailsByAddress() on line 503: /// @return reserveId The
reserve ID in 32 bytes. 1st byte is reserve type

KyberMatchingEngine.getTradingREserves() on line 62: /// @return reserveIds Array of
reserve IDs for the trade, each being 32 bytes. 1st byte is reserve type

37
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

8.8 Platform Fee up to Almost 100%
Note Version 1

While the documentation clearly states:

The platform calling the trade can define any platform_fee up to almost 1
00% of the trade value (for the sake of simplicity, we decided not to for
ce any strict upper bound for this param).

This creates a rather high risk for the users. Users trading via an affiliate might not even know that
Kyber is used for their trade or that they need to be careful. If something goes wrong, for the
unaware user it might look like Kyber collected this fee. A simple sanity check would reduce this
trust issue.

8.9 Tokens With Transfer Fees
Note Version 1

As in previous implementations of Katalyst - Network V4 special care must be taken regarding
tokens that have transfer fees. These tokens cause issues as their transferred amounts into and out
of the KyberNetworkContract differ due to the fees that were deducted. Hence, the consistency
checks for the transferred amounts will fail and the transaction will, correctly, revert.

38
KYBER NETWORK PTE. LTD. - Assessment - Katalyst - Network V4
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

	1 Executive Summary
	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Network
	3.1.1 Fees
	3.1.1.1 Network fee
	3.1.1.2 Platform fee

	3.1.2 Reserves
	3.1.2.1 Listing reserves
	3.1.2.2 Reserve routing
	3.1.2.3 Reserve rebates

	3.1.3 Token swaps
	3.1.3.1 Kyber Proxy contract
	3.1.3.2 Kyber Network contract

	3.2 The DAO
	3.2.1 KyberStaking contract
	3.2.1.1 Delegating stake
	3.2.1.2 Withdrawing stake

	3.2.2 KyberDAO contract
	3.2.2.1 Voting campaigns
	3.2.2.2 Voting
	3.2.2.3 Epochs
	3.2.2.4 Claiming rewards

	3.3 Roles
	3.3.1 KyberNetwork
	3.3.2 KyberNetworkProxy
	3.3.3 KyberMatchingEngine
	3.3.4 KyberHintHandler
	3.3.5 KyberStorage
	3.3.6 KyberDao
	3.3.7 KyberStaking
	3.3.8 KyberFeeHandler

	3.4 Trust Model
	3.4.1 Kyber
	3.4.2 Reserves
	3.4.3 Token contracts
	3.4.4 Users
	3.4.5 Platforms
	3.4.6 Stakers
	3.4.7 Poolmaster

	3.5 Updates in Version 2
	3.6 Updates in Version 4
	3.7 Formal trust assumptions

	4 Limitations and use of report
	4.1 Inherent limitations
	4.2 Restriction of use and purpose of the report

	5 Terminology
	6 Findings
	6.1 Incorrect Amount for Fee Calculation
	6.2 Call Any payable Fallback Function / Incorrect Event Possible
	6.3 Overflows and Underflows During Calculations

	7 Resolved Findings
	7.1 Trading With Reserve Not Allowed to Trade This Token
	7.2 totalEpochPoints Not Matching Specification
	7.3 Amount for Rate Query Might Be Higher Than Actual Trade Amount
	7.4 Removing Reserves and the Approval for Tokens
	7.5 The First Bytes of reserveID Might Not Match reserveType[reserveID]
	7.6 Inconsistent bytes32 Comparison
	7.7 Superfluous setDecimals Call
	7.8 Unnecessary Event Parameter bool add
	7.9 Unused Field rateWithNetworkFee of Struct TradeData
	7.10 Unused Import IKyberFeeHandler.sol in KyberDao.sol
	7.11 Duplicate View Function for negligibleRateDiffBps
	7.12 Inconsistent Delegated Event
	7.13 Redundant Array delete
	7.14 Redundant Assertions
	7.15 Reward/rebate/BPS Off-By-One
	7.16 Unnecessary Check endTimestamp == 0
	7.17 Use assert for "Should Not Happen"
	7.18 latestNetworkFeeResult Initial Value Hardcoded but Overwritten in Constructor
	7.19 require(validateVoteOption) Never Fails
	7.20 validateCampaignParams of KyberDAO Allows Incompatible startTimestamp and startEpoch

	8 Notes
	8.1 Confusing Comment
	8.2 Front-running KNC Burning
	8.3 Imprecise Specification
	8.4 Inconsistent Handling to Ensure Non-Zero Address
	8.5 Indexing link of NewCampaignCreated
	8.6 Minimum of One Interaction With KyberNetwork in Every Epoch
	8.7 Outdated Comments About First Byte of the Reserve ID
	8.8 Platform Fee up to Almost 100%
	8.9 Tokens With Transfer Fees

