
Automatic 
Differentiation 



Automatic Differentiation

This article serves as a summary of the main concepts
regarding Automatic Differentiation (AutoDiff) and its appli-
cation in the context of CVA. Automatic Differentiation is a
family of techniques for evaluating derivatives of numeric
functions expressed as computer programs with unprece-
dented speed and accuracy. We accompany our theoret-
ical discussion with the results of a numerical experiment
where we compute CVA sensitivities using Automatic Dif-
ferentiation and the standard method finite differences, and
demonstrate that AutoDiff finishes the computations up to
hundreds of times faster.

1 Introduction and outline

AutoDiff is ubiquitous in the field of machine learn-
ing, specifically for gradient-based optimisation procedures
(see Baydin et al. (2018) for an excellent survey), but also
has a broad spectrum of applications in the world of fi-
nance, specifically in risk management, hedging, calibra-
tion and computation of regulatory capital. Here we refer
to the works of Kaebe et al. (2009), Capriotti (2011) and
Henrard (2013). Specifically for the application of AutoD-
iff in relation to XVAs, we mention the works of Capriotti et
al. (2011) and Green (2015). We also highlight the implicit
application of AutoDiff in the context of finance through re-
cent developments in the application of neural networks in
the area of hedging by Buehler et al. (2019), the solving of
optimal stopping problems by Becker et al. (2019) and the
calibration of local stochastic volatility models using genera-
tive adversarial networks (GANs) by Cuchiero et al. (2020)
to mention a few. One generally differentiates between two
modes of Automatic Differentiation, namely between the
Forward mode and the Reverse mode. The Reverse mode
is generally preferred for functions which have a large num-
ber of inputs and a small number of outputs, whereas the
opposite holds true for the Forward mode. In this work, we
only discuss the Reverse mode of Automatic Differentia-
tion, having finance applications in mind. Therefore, for the
purposes of this work, when we refer to Automatic Differen-
tiation or AutoDiff we mean Reverse-mode Automatic Dif-
ferentiation. Moreover, we only discuss the case where the
objective function is real-valued and depends on multiple
inputs, and note that our discussion can easily be gener-
alised to the case where the objective function has multiple
outputs. For an in-depth introduction to both the Forward

and Reverse mode of Automatic Differentiation we refer to
Griewank et al. (2008). The rest of this article is structured
as follows. In Section 2, we formally outline the problem set-
ting and give a brief overview of the finite difference method
for the numerical calculation of derivatives. In Section 3, we
discuss the main concepts behind Automatic Differentiation
and the motivations behind its use. Afterwards, in Section
4, we give an introduction to CVA and how AutoDiff can be
applied in this context. Section 5 presents the results of the
numerical experiment, where we have compared the Au-
toDiff runtime to the finite difference runtime for CVA sensi-
tivity calculations. Finally, we conclude our discussion and
results in Section 6.

2 Problem setting and finite differences

Let X ⊂ Rn be open for some n ∈ N. By C1(X)

we denote the set of continuously differentiable functions
f : X → R. We fix an f ∈ C1(X) throughout this section
and the next section. The object of interest is the set of par-
tial derivatives (∂f(x)/∂x1, ..., ∂f(x)/∂xn), i.e. the gradient
of f with respect to a given x ∈ X. A classical approach
to compute the latter the is finite differences method. Let
us define x(i, ε) = (x1, ..., xi + ε, ..., xn), for i = 1, ..., n,
where ε > 0 and small enough such that x(i, ε) ∈ X, for
all i = 1, ...n. Note that the existence of such an ε is guar-
anteed since X is open. The finite differences method ap-
proximates the gradient of f with respect to x by means of

∂f(x)

∂xi
' f(x(i, ε))− f(x)

ε
, i = 1, ..., n.

Applying this procedure to obtain the gradient of f requires
n + 1 evaluations of the objective function f , which makes
the application of finite differences a very intensive compu-
tational task, in the case of a high-dimensional input space
X, which is usually the case in the field of finance or ma-
chine learning. Moreover, the choice of ε always comes
with a tradeoff between accuracy and numerical stability.
We refer to Baydin et al. (2018) for further details on the
finite differences method and its comparison to AutoDiff.

3 Automatic Differentiation

AutoDiff uses the idea of “divide and conquer”, where
the function f is represented as a composition of simpler

2



functions for which the derivatives are straighforward to
calculate, and the final result is aggregated by means of
the chain rule. In the sequel we follow a similar descrip-
tion of Automatic Differentiation as provided by Griewank
et al. (2008) and Capriotti (2011). AutoDiff consists of
two steps, namely the forward pass and the backward
pass. In the forward pass, the function x 7−→ f is eval-
uated at the input x by passing it through a sequence of
elementary operations. These elementary operations can
be represented by means of scalar intermediate variables
w1, ..., wn, wn+1, ..., wk, where the first n variables are used
to initialize x, i.e. w1 = x1, ..., wn = xn, and we have
wℓ = f ℓ({wj}j≺ℓ) for ℓ = n + 1, ..., k, where {wj}j≺ℓ in-
dicates the set of all wj , 1 ≤ j < ℓ, such that wℓ depends
explicitly on wj and f ℓ is an elementary scalar function. We
notice that such representations are not unique and that
during the forward pass the values of the intermediate vari-
ables and their dependencies are stored. Usually, such a
sequence of operations can be represented as a computa-
tional graph which we visualise schematically as

x = (w1, ..., wn)→wℓ = f ℓ({wj}j≺ℓ)

for ℓ = n+ 1, ..., k − 1 → wk = y,

where we have written f(x) = y for convenience. Next, we
describe the backward pass. For this purpose, we define
the adjoints wℓ as ∂y/∂wℓ for ℓ = 1, ..., k. We notice that
wk = 1 holds by definition. Note that we can then write

wℓ =
∂y

∂wℓ
=

∑
j≻ℓ

∂y

∂wj

∂wj

∂wℓ
=

∑
j≻ℓ

wj
∂wj

∂wℓ
,

for ℓ = 1, ..., k − 1, where we have used the chain rule in
the second equality and the sum runs over j > ℓ such that
wj depends explicitly on wℓ. Therefore, we actually get the
object of interest xi = wi = ∂y/∂wi, for i = 1, ..., n, by
backward propagation of the adjoints, i.e.

x = (w1, ..., wn)← wℓ for ℓ = k − 1, ..., n+ 1← wk = 1,

which leverages the information obtained in the forward
pass.
We end this section by borrowing a theoretical result

from Griewank et al. (2008) which is known as the cheap
gradient principle, and demonstrates the efficiency of
AutoDiff. Informally, it states

“The computational cost of evaluating the derivatives
of a scalar objective function via Reverse-mode Automatic
Differentiation is at most 4 times the computational cost of
evaluating the objective function.”

This makes Reverse-mode Automatic Differentiation
an appealing tool for finance and machine learning ap-
plications where the objective function is real-valued but

the input space X is usually high-dimensional. Alongside
the efficiency, an additional attractive attribute of AutoDiff
is the accuracy with which the derivatives are computed.
No approximations are needed as in the finite difference
method. AutoDiff performs all computations in an exact
manner (up to machine precision).

4 Applications in the world of CVA

Credit Valuation Adjustment (CVA) is the adjustment to
the fair value of derivative instruments in order to take into
account the downgrade of the counterparty quality. For-
mally, let (Ω,F ,F,Q) be a filtered probability space, where
F = (Ft)t≥0 is a filtration assumed to satisfy the usual con-
ditions, and all processes are assumed to be adapted to F.
The CVA is defined by

C = EQ
[
(1−R)V +

τ 1τ≤T

]
,

where EQ[·] denotes the expectation under Q, R represents
the recovery rate and is [0, 1)-valued, τ is an F-stopping
time which can be interpreted as the default time of the
counterparty, and V = (Vt)t≥0 denotes the process which
describes the discounted mark-to-market value of the port-
folio the bank holds with the counterparty subject to netting
and collateral agreements. Moreover, we defined x+ =

max(0, x), x ∈ R. For C to be well-defined, we also as-
sume that Vt is Q-integrable for all t ≥ 0. Furthermore, T
denotes the longest maturity of a contract in the portfolio
that the bank has with the counterparty.
We introduce the Rn-valued risk factor process Z =

(Z1
t , ..., Z

n
t )t≥0, which we assume is driving the values of

the transactions the bank has with the counterparty and the
credit rating of the counterparty, hence V and τ depend on
Z. The propagation of the risk factors Z is usually governed
by a stochastic differential equation, with given initial values
Z1
0 , ..., Z

n
0 , which are either directly observable or market

implied. This makes C actually a function of these initial
values, i.e. C ≡ C(Z1

0 , ..., Z
n
0 ). The object of interest is then

X, the set of sensitivities of the CVAwith respect to the initial
values of the risk factors, i.e.

X =

(
∂C

∂Z1
0

, ...,
∂C

∂Zn
0

)
.

The set of sensitivities X is used for risk management and
hedging purposes (see Capriotti et al. (2011), Ruiz (2015)
and Green (2015)). Moreover, under MAR50 (see BCBS
(2020)), X can be used for the computation of CVA regu-
latory capital under the SA-CVA framework (which is less
conservative in terms of regulatory capital than the BA-
CVA frameowork, which does not require the computation
of X). For all the applications mentioned, speed and accu-
racy play a detrimental role, both of which can be achieved
by AutoDiff. We also mention at this point that it is only

3



rarely possible to evaluate C analytically but instead one
has to rely on Monte Carlo techniques, where the time hori-
zon [0, T ] is discretised and replaced by a set {0 = t0 <

t1 < ... < tN = T}, the risk factor process Z is simulated
on this discretised time grid and the expectation EQ[·] is re-
placed by the empirical mean1.
To illustrate the above points, we discuss a specific ex-

ample. In BCBS (2011), C is approximated by C̃, which is
defined as

C̃ = (1−R)
N−1∑
i=0

EQ[V
+
ti+1

] + EQ[V
+
ti ]

2
∆P+

ti ,

where, ∆Pti is given by Pti − Pti+1 and Pti =

−exp (sti · ti/(1−R)), for i = 0, ..., N , and st denotes the
counterparty CDS spread with maturity t, which can be ob-
tained from a finite set of market-observable CDS spreads,
for example by a cubic C2 spline interpolation. We as-
sume that Vti can be written as Vti = Gti(Zti), for some
function Gti : Rn → R, for i = 0, ..., N , and that Z is a
Markov process which is discretised using a simple Euler
scheme such that the discrete-time dynamics of Z are gov-
erned by Zti+1

= Fti(Zti ,Wi), for i = 0, ..., N − 1, where
Fti : Rn × Rm → Rn and Wi is an Rm-valued random vari-
able. For a number of M i.i.d. simulations of the random
variables W0, ...,Wi, which we denote by W0,j , ...,Wi,j , for
j = 1, ...,M , we can approximate EQ[V

+
ti+1

] by

EQ[V
+
ti+1

] ' 1

M

M∑
j=1

(Gti+1
(Fti(...Ft1(Z0,W0,j)...,Wi,j)))

+.

The previous approximation makes it evident thatEQ[V
+
t ] is

a function of Z0 = (Z1
0 , ..., Z

n
0 ). Combining the previous ob-

servations, we can see that C̃ is a function of the initial mar-
ket observable CDS spreads of the counterparty, as well as
the initial values of the risk factors. The applicability of Au-
toDiff for this specific example boils down to the regularity
properties of the interpolation scheme of the counterparty
CDS spreads, as well of the functions Gti and Fti .

5 A numerical experiment

In order to demonstrate the efficiency of Automatic Differ-
entiation, we have conducted a numerical experiment for
calculating the CVA sensitivities of portfolios consisting of
the same number of equity options and interest rate caps,
the latter having either monthly or quarterly payment fre-
quencies. All trades are assumed to be part of a single net-
ting set and to have a maturity of 1Y. For equity options, the

1The applicability of AutoDiff in this context depends on the dynamics
of the risk factor process Z, as well as the relationship between the risk
factors and the discounted value of the portfolio V and the default time
τ . We note, however, that the assumptions needed for the applicability of
AutoDiff are usually satisfied in practical applications, and refer the reader
to Glasserman (2004) and Protter (1990) for the technical details.

value is determined by the Black-Scholes formula, whereas
the relevant equity risk factors are simulated in a Heston
model. For the material mentioned we refer to Hilpisch
(2015). Interest rate caps are valued using the analytical
formula available in the Hull-White 1 factor model, and the
short rate is also simulated using the latter (see Brigo et al.
(2006)). A recovery rate R = 0 together with a flat discount
curve equal to 1 is assumed and a weekly time grid is cho-
sen to simulate the risk factors. In addition to that, all trades
and model parameters are subject to random initialisation2
subject to certain conditions in order for the trades and sim-
ulations to make economic sense, and the CDS spreads
and interest rate yields are interpolated using a cubic C2

spline. The CVA is calculated by means of C̃ from above,
and the CVA sensitivities X are calculated with respect to
equity spot prices, equity volatilities, interest rate volatilites
as well as interest rate yields and CDS spreads of the coun-
terparty across pre-specified tenors. We denote by tFD(n)

or tAD(n) the amount of time the finite differences method
or Automatic Differentiation needed for computing the CVA
sensitivities with respect to n risk factors. The figure below
depicts tFD(n)/tAD(n) as a function of n, and can be in-
terpreted as the number of times Automatic Differentiation
is faster than finite differences for a given number of CVA
sensitivity calculations. The red dots represent actual cal-
culations with respect to the risk factors mentioned above
for a given number of trades, whereas the orange line rep-
resents a linear interpolation between the red dots and is
present only for visual purposes.

As is evident from the figure, Automatic Differentiation
enables CVA sensitivities to be calculated faster by factors
than the standard method finite differences. For example, if
the calculation of CVA sensitivities with respect to 700 risk
factors would take 1.5 minutes using Automatic Differenti-
ation, the corresponding calculation using finite differences
would take around 7.5 hours.

2Neither client data, nor PwC data were used in the numerical experi-
ments.

4



6 Conclusion

In this article we have outlined the main principles regard-
ing the evaluation of derivatives of numeric functions. We 
have briefly described the main concepts regarding the Re-
verse mode of Automatic Differentiation and presented an 
example application in the context of CVA. Specifically, we 
have demonstrated how AutoDiff can be used for the effi-
cient calculation of CVA sensitivities, which in turn can be 
used for effective risk management, hedging, as well as 
for the calculation of regulatory capital. We have demon-
strated in our numerical experiments that AutoDiff can per-
form calculations hundreds of times faster than the com-
monly used finite differences method. The speed and accu-
racy provided by AutoDiff open the gates for a next-level risk 
management. Importantly, we note that the scope of appli-
cations of AutoDiff is not isolated to the area of CVA, but 
extends in general to applications where sensitivity based 
calculations need to be performed.

References

Baydin, A.G., Pearlmutter, B.A., Radul, A.A., and Siskind, 
J.M., Automatic differentiation in machine learning: a 
survey, Journal of Marchine Learning Research 18: 1-43, 
2018.

BCBS, Basel III: A global regulatory framework 
for more resilient banks and banking systems, 
https://www.bis.org/publ/bcbs189.pdf, 2011.

BCBS, MAR50 - Credit Valuation Adjustment Frame-
work, https://www.bis.org/basel_framework/chapter/
MAR/50.htm?inforce=20230101&published=20200708, 
2020.

Becker, S., Cheridito, P., and Jentzen, A., Deep opti-
mal stopping, Journal of Machine Learning Research 20: 
1-25, 2019.

Brigo, D., and Mercurio, F., Interest rate models-Theory 
and Practice, Springer-Verlag, Berlin, 2006.

Buehler, H., Gonon, L., Teichmann, J., and Wood, B., 
Deep hedging, Quantitative Finance 19 (8): 1271-1291, 
2019.

Capriotti, L., Fast Greeks by algorithmic differentia-
tion, The Journal of Computational Finance 14 (3): 3-35, 
2011.

Capriotti, L., Lee, J., and Peacock, M., Real time 
counterparty credit risk management in Monte Carlo,
https://ssrn.com/abstract=1824864, 2011.

Cuchiero, C., Khosrawi, W., and Teichmann, J., A 
generative adversarial network approach to calibration of 
local stochastic volatility models, Risks 8 (4): 101, 2020.

Giles, M., and Glasserman, P., Smoking adjoints: Fast 
monte carlo greeks, Risk 19 (1): 88-92, 2006.

Glasserman, P., Monte Carlo methods in financial en-
gineering, Springer-Verlag, New York, 2004.

Green, A., XVA: credit, funding and capital valuation 
adjustments, John Wiley & Sons, 2015.

Griewank, A., and Walther, A., Evaluating derivatives: 
principles and techniques of algorithmic differentiation, 
Society for industrial and applied mathematics, 2008.

Henrard, M., Calibration in finance: Very fast greeks 
through algorithmic differentiation and implicit function, 
Procedia Computer Science 18: 1145-1154, 2013.

Hilpisch, Y., Derivatives analytics with Python: data 
analysis, models, simulation, calibration and hedging, 
John Wiley & Sons, 2015.

Kaebe, C., Maruhn, J.H., and Sachs, E.W., Adjoint-
based Monte Carlo calibration of financial market models, 
Finance and Stochastics 13 (3): 351-379, 2009.

Ruiz, I., Xva desks: A new era for risk management, 
Palgrave Macmillan, London, 2015.

Protter, P., Stochastic integration and differential equations, 
Spinger-Verlag, Berlin, 1990.

5

https://www.bis.org/publ/bcbs189.pdf
https://www.bis.org/basel_framework/chapter/MAR/50.htm?inforce=20230101&published=20200708
https://www.bis.org/basel_framework/chapter/MAR/50.htm?inforce=20230101&published=20200708
https://ssrn.com/abstract=1824864


Andrin Bernet 
Partner, Financial Risk Management, 
PwC Switzerland 
+41 58 792 24 44
andrin.bernet@pwc.ch

Contacts

© 2022 PwC. All rights reserved. “PwC” refers to PricewaterhouseCoopers AG, which is a member firm of PricewaterhouseCoopers International Limited, 
each member firm of which is a separate legal entity.

Manuel Plattner 
Director, Financial Risk Management, 
PwC Switzerland 
+41 58 792 14 82
manuel.plattner@pwc.ch

Patrick Mijatovic 
Senior Associate, Financial Risk Management, 
PwC Switzerland 
+41 58 792 40 92
patrick.mijatovic@pwc.ch




